Re-ranking algorithm using post-retrieval clustering for content-based image retrieval

نویسندگان

  • Gunhan Park
  • Yunju Baek
  • Heung-Kyu Lee
چکیده

In this paper, we propose a re-ranking algorithm using post-retrieval clustering for content-based image retrieval (CBIR). In conventional CBIR systems, it is often observed that images visually dissimilar to a query image are ranked high in retrieval results. To remedy this problem, we utilize the similarity relationship of the retrieved results via post-retrieval clustering. In the first step of our method, images are retrieved using visual features such as color histogram. Next, the retrieved images are analyzed using hierarchical agglomerative clustering methods (HACM) and the rank of the results is adjusted according to the distance of a cluster from a query. In addition, we analyze the effects of clustering methods, querycluster similarity functions, and weighting factors in the proposed method. We conducted a number of experiments using several clustering methods and cluster parameters. Experimental results show that the proposed method achieves an improvement of retrieval effectiveness of over 10% on average in the average normalized modified retrieval rank (ANMRR) measure. 2003 Published by Elsevier Science Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Re-ranking of Images and Removing Duplicate Images

Image re-ranking is one of the most efficient way by which you can improve the image search results and has been adopted by many search engines. Texture analysis is popular operation in CBIR. In this paper we have combined text based search along with CBIR and removing of duplicate images is done using pixel matching algorithm. Text based search is done using tags. CBIR is done using texture fe...

متن کامل

A Ranking Algorithm Using Dynamic Clustering for Content-Based Image Retrieval

In this paper, we propose a ranking algorithm using dynamic clustering for content-based image retrieval(CBIR). In conventional CBIR systems, it is often observed that visually dissimilar images to the query image are located at high ranking. To remedy this problem, we utilize similarity relationship of retrieved results via dynamic clustering. In the first step of our method, images are retrie...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Process. Manage.

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2005